

QUESTION BANK 2019

QUESTION BANK (DESCRIPTIVE)

Subject with Code : FLAT(16CS517) Year & Sem: III-B.Tech & I-Sem

Course & Branch: B.Tech – CSE & CSIT Regulation: R16

<u>UNIT I</u> **Introduction To Finite Automata**

States Input Alphabtes

1. a) Consider the below finite automata and check the strings are accepted or not

		(Q)	0	1
		->q0	q1	q3
		q1	q0	q2
		(q2)	q3	q1
		q3	q2	0 p
(i) 1110	(ii) 0	001 (ii	i) 1010	
NEA What are the differences between DEA & NEA?				

b) Define NFA. What are the differences between DFA & NFA?

2. Convert the following NFA with ε moves to DFA without ε moves.

ε

Start

ε

[L2,2+2+2M][L2,4M] [L2,10M]

[L3,10M]

QUESTION BANK 2019

Present State	I/P=0		I/P=1	
State	Next State	O/P	Next State	O/P
\rightarrow A	С	0	В	0
В	А	1	D	0
С	В	1	А	1
D	D	1	С	0

4. Convert the following Mealy machine into its equivalent Moore machine. [L2,10M]

5. a) Write about relations on sets.	[L1,2M]
b) Define Grammar? What are the tuples?	[L1,2M]
c) Define Finite Automaton.	[L2,2M]
d) Show that $(0^*1^*)^* = (0+1)^*$.	[L3,2M]
e) Define Mealy machine and Moore machine.	[L2,2M]
6. a) Discuss Chomsky's Hierarchy of formal languages.	[L1,5M]
b) Explain briefly about DFA and NFA?	[L1,5M]

7. a) Define Moore machine? Construct Mealy machine corresponding to Moore machine?

[L2,5M]

States	Next	Output	
(Q)	I/P=0 I/P=1		Output
->q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1

b) Prove i)
$$R=(1+00*1) + (1+00*1) (0+10*1)* (0+10*1)* = 0*1(0+10*1)*$$

ii) $R=C+1^*(011)^*(1^*(011)^*)^* = (1+011)^*$

[L3, 21/2+21/2M]

8. Write down procedure for Myhill- Nerode theorem with a given example. ('*' means final states).

[L2, 10M]

	Next State		
Present State	I/P=a	I/P=b	
\rightarrow A	В	F	
В	А	F	
С	G	А	
D	Н	В	
E	А	G	
*F	Н	С	
*G	А	D	
*H	А	С	

				QUESTION BANK	2019
9. a) Define relations on set and e	explain its prop	perty with an	example	[L]	1,3M]
b) Define NFA and DFA. Cons	truct DFA for	the given NI	FA	[L2	2,7M]
		Nex	t state 1		
	$\rightarrow q^{0}$	q0,q1	q0		
	q 1	q2	q1		
	<mark>q</mark> 2	q 3	q3		
	(q3)	-	q2		
10. a) List out the identities of Regular expression.					3,4M]
b) From the identities of RE,	prove that				
i) 10+(1010)*[^+(1010)*]=10+(1010)*				[L3	3,2M]
ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*				*)* [L3	3,2M]
c) Define finite automata? Exp	olain detail ab	out the tuples	5.	[L2	2,2M]

[L1,4M]

[L2,6M]

<u>UNIT II</u> <u>Regular Languages</u>

- a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L1,5M]
 b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem. [L1,5M]
- 2. Explain about Arden's theorem, for constructing the RE from a FA with an example. [L1,10M]

3. a) List out the identities of Regular expression.

b) From the identities of RE, prove that

i) 10+(1010)*[^+(1010)*]=10+(1010)*

- ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*
- 4. a) Consider the below finite automata and check the strings are accepted or not [L3,6M]

States	Input Alphabtes		
(Q)	0	1	
<mark>->q</mark> 0	q1	q3	
q1	q 0	q2	
(q2)	q3	q1	
q3	q2	q0	

(i) 1110 (ii) 0001 (iii) 1010

b) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,4M]

5. a) Prove R=Q+RP has unique solution, R=QP* [L1,3M]

b) Explain about the Arden' theorem, for constructing the RE from a FA with an example [L1,7M]

- 6. Explain how equivalence between two FA is verified with an example. [L2,10M]
- 7. Prove that the language $L = \{a^n b^n | n \ge 1\}$ is not regular using pumping lemma [L2,10M] with procedure.

8. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,5M]
b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

[L3,5M]

9. a)Write the process of equivalence two FA's? Find whether the equivalence two FA's or not.[L3,7M]

b) List out the identities of Regular expression. [L3,3M] 10. Prove that the language L= $\{a^nb^nc^n \mid n \ge 1\}$ is not regular using pumping lemma. [L3,10M]

<u>UNIT III</u>

Context Free Grammars and Languages

	Content 1100 Grunnhurs und Lunguuges	
1.	Write the procedure and Eliminate left recursion from the following Grammar $E \rightarrow E + T/T$	[L2,10]
2	F = (E)/10	
2.	a) Explain about derivation and parse trees? Construct the string 0100110 from	n the Leitmost
	and Rightmost derivation.	
	$S \rightarrow 0S/1AA$	
	$A \rightarrow 0/1A/0B$	
	$B \rightarrow 1/0BB$	[L2,5M]
	b) Find the parse tree for generating the string 11001010 from the given gram	mar.[L2,5M]
	$S \rightarrow IB/0A$	
	$A \rightarrow I/IS/0AA$	
2	$B \rightarrow 0/0S/1BB$	
3.	a) Define Ambiguous grammar.	[L2,4M]
	b) Remove Left recursion from the grammar $S \rightarrow Sab/1$	
	$I \rightarrow I C U/F$	
4	$\Gamma \overline{\rho} \Gamma a/O$	[L2, 0M]
4.	a) Explain Left fector from the grammar $A \rightarrow abB/aB/adg/adgB/adfB$	[L3,4M]
5	Simplify the following context free grammar (Here A stands for ensilon (c))	$\begin{bmatrix} L3, 0M \end{bmatrix}$
5.	Simplify the following context nee grammar. (Here, M stands for epsilon (c)):	
	$T \rightarrow aTb \Lambda$	
	$I \rightarrow c I I \wedge$	
	$V \rightarrow aVc W$	
	$W \rightarrow bW \Lambda$	
6.	Convert the following grammar into Greibach normal form.	[L4.10M]
	S→AA/a	
	A→SS/b	
7.	a) Write the process for Convert the grammar into CNF?	[L3,4M]
	b) Convert the following grammar into CNF.	[L3, 6M]
	$S \rightarrow bA/aB$ $A \rightarrow bAA/aS/a$ $B \rightarrow aBB/bS/a$.	
8.	a) What is linear grammar? Explain in detail with example.	[L3,4M]
	b) Explain the closure properties of context free languages.	[L3, 6M]
9.	a)Remove the unit production from the grammar	
	$S \rightarrow AB, A \rightarrow E, B \rightarrow C, C \rightarrow D, D \rightarrow b, E \rightarrow a$	[L3,4M]
	b) Remove ϵ productions from the grammar	
	$S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b/\epsilon, C \rightarrow D/\epsilon, D \rightarrow d$	[L3, 6M]
10	. a) Write about Decision problems for CFLs with example?	[L3,5M]
	b) What is the differentiate between CFG and Regular Language?	[L3, 4M]

<u>UNIT IV</u> <u>Pushdown Automata</u>

1. a) C of 0	Construct a PDA which recognizes all strings that contain equal number 's and 1's.	[L2, 6M]
b) A	PDA is more powerful than a finite automaton. Justify this statement.	[L2, 4M]
2. Cor	struct PDA from the following Grammar.	
	$S \rightarrow aB$	
	$B \rightarrow bA/b$	
2 0	$A \rightarrow aB$	[L2, 10M]
3. Cor	istruct PDA from the following Grammar	
37 B-	UBB 05/15/0	[I 2 10M]
Show	w an ID for the string 010000 is generated for PDA?	[L2, 10]
4. Cor	struct a CFG equivalent to the following PDA.	[L2.10M]
PD	$A = \{(p, q), (0, 1), \delta, p, q, (Z, X)\},$ where p is initial state, q is final state.	[,1011]
δ is	defined as $\delta(p,0,Z) = (p,XZ)$, $\delta(p,0,X) = (p,XX)$, $\delta(p,1,X) = (q,\epsilon)$, $\delta(p,1,X) = (p,\epsilon)$,	$\delta(\mathbf{p}, \boldsymbol{\epsilon}, \boldsymbol{Z}) = (\mathbf{p}, \boldsymbol{\epsilon}).$
		[L3,10M]
5. a) C	Construct an equivalent PDA for the following CFG	[L3,7M]
	S→aAB bBA	
	A→bS a	
• • •	$B \rightarrow aS \mid b$	
b) E	Explain the informal introduction and formal definition of PDA.	[L2, 3M]
6. a) I	Define Instantaneous description (ID) in PDA.	[L2,5M]
b) I	Explain about the graphical notation of PDA.	[L2, 5M]
7. a) V	Vrite the process for convert PDA into an equivalent CFG.	[L4,4M]
b) (Convert the following PDA into an equivalent CFG.	[L4, 6M]
	$\delta\left(q_{0},a_{0},z_{0}\right) \rightarrow \left(q_{1},z_{1}z_{0}\right)$	
	$\delta(\mathbf{q}_0,\mathbf{b},\mathbf{z}_0) \rightarrow (\mathbf{q}_1,\mathbf{z}_2\mathbf{z}_0)$	
	$\delta(\mathbf{q}_1,\mathbf{a},\mathbf{z}_1) \boldsymbol{\rightarrow} (\mathbf{q}_1,\mathbf{z}_1\mathbf{z}_1)$	
	$\delta(q_1,b,z_1) \rightarrow (q_1,\lambda)$	
	$\delta(q_1, b, z_2) \rightarrow (q_1, z_2 z_2)$	
	$\delta(q_1,a,z_2) \rightarrow (q_1,\lambda)$	
	$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) //$ accepted by the empty stack.	
8. a) I	Define push down automata? Explain acceptance of PDA with empty sta	ck. [L2,5M]
b) I	Define Instantaneous description (ID) in PDA.	[L2, 5M]
9. a) E	Explain about the graphical notation of PDA.	[L2,4M]
b) (Construct an equivalent PDA for the following CFG.	[L3, 6M]
	S→aAB bBA	
	A→bS a	
	$B \rightarrow aS \mid b.$	
10. Exp	lain Deterministic Push down Automata with example?	[L2, 12M]

<u>UNIT - V</u> Turing machines & Undecidability

1.	Construct a Turing machine which multiplies two unary numbers.	[L1,10M]
2.	Construct a Turing machine for Language $L=a^{n}b^{n}$, where $n>0$ [L1,10M]	
3.	Construct a Turing machine that recognizes the language $L=\{a^nb^n, n>1\}$. Show an	ID for the
	string 'aabb' with tape symbols.	[L2,10M]
4.	Explain conversion of regular Expression to TM with example.	[L3,10M]
5.	Explain the various types of Turing machine.	[L3,10M]
6.	Explain Universal turing machine	[L3,10M]
7.	a)Design a multi head Turing Machine for checking whether a binary string	; is a
	palindrome or not. Show the ID for 1001. [L3,6M]	
	b) Write about Universal TM.	[L3, 4M]
8.	Explain in detail about variations of the TM?	[L3,10M]
9.	Construct a Turing machine that recognizes the language a ⁿ b ⁿ c ⁿ .	[L3,10M]
10.	a) Define PCP. Verify whether the following lists have a PCP solution.	[L3,7M]
	$\binom{abab}{ababaaa}, \binom{aaabbb}{bb}, \binom{aab}{baab}, \binom{ba}{baaa}, \binom{ab}{ba}, \binom{aa}{a}.$	
	b) Describe linear bounded automaton.	[L3,3M]

Prepared by: B. PAVAN KUMAR & R.M.MALLIKA